Domain Decomposition Algorithms for Two Dimensional Linear Schrödinger Equation
نویسندگان
چکیده
This paper deals with two domain decomposition methods for two dimensional linear Schrödinger equation, the Schwarz waveform relaxation method and the domain decomposition in space method. After presenting the classical algorithms, we propose a new algorithm for the Schrödinger equation with constant potential and a preconditioned algorithm for the general Schrödinger equation. These algorithms are studied numerically. The experiments show that the two new algorithms improve the convergence rate and reduce the computation time. Besides the traditional Robin transmission condition, we also propose to use a newly constructed absorbing condition as the transmission condition.
منابع مشابه
Méthode de décomposition de domaines pour l'équation de Schrödinger. (Domain decomposition method for Schrödinger equation)
This thesis focuses on the development and the implementation of domain decomposition methods for the linear and non-linear, one dimensional and two dimensional Schrödinger equations. In the first part, we focus on the Schwarz waveform relaxation method (SWR) for the one dimensional Schrödinger equation. In the case the potential is linear and time-independent, we propose a new algorithm that i...
متن کاملTime-splitting pseudo-spectral domain decomposition method for the soliton solutions of the one- and multi-dimensional nonlinear Schrödinger equations
In this paper, we study the simulation of nonlinear Schrödinger equation in one, two and three dimensions. The proposed method is based on a time-splitting method that decomposes the original problem into two parts, a linear equation and a nonlinear equation. The linear equation in one dimension is approximatedwith the Chebyshev pseudo-spectral collocationmethod in space variable and the Crank–...
متن کاملWhen the classical & quantum mechanical considerations hint to a single point; a microscopic particle in a one dimensional box with two infinite walls and a linear potential inside it
In this paper we have solved analytically the Schrödinger equation for a microscopic particle in a one-dimensional box with two infinite walls, which the potential function inside it, has a linear form. Based on the solutions of this special quantum mechanical system, we have shown that as the quantum number approaches infinity the expectation values of microscopic particle position and square ...
متن کاملDomain decomposition algorithms for the two dimensional nonlinear Schrödinger equation and simulation of Bose-Einstein condensates
In this paper, we apply the optimized Schwarz method to the two dimensional nonlinear Schrödinger equation and extend this method to the simulation of Bose-Einstein condensates (Gross-Pitaevskii equation). We propose an extended version of the Schwartz method by introducing a preconditioned algorithm. The two algorithms are studied numerically. The experiments show that the preconditioned algor...
متن کاملNumerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact solution
The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 72 شماره
صفحات -
تاریخ انتشار 2017